Characterizing the white matter hyperintensity penumbra with cerebral blood flow measures
نویسندگان
چکیده
OBJECTIVE White matter hyperintensities (WMHs) are common with age, grow over time, and are associated with cognitive and motor impairments. Mechanisms underlying WMH growth are unclear. We aimed to determine the presence and extent of decreased normal appearing white matter (NAWM) cerebral blood flow (CBF) surrounding WMHs to identify 'WM at risk', or the WMH CBF penumbra. We aimed to further validate cross-sectional finding by determining whether the baseline WMH penumbra CBF predicts the development of new WMHs at follow-up. METHODS Sixty-one cognitively intact elderly subjects received 3 T MPRAGE, FLAIR, and pulsed arterial spin labeling (PASL). Twenty-four subjects returned for follow-up MRI. The inter-scan interval was 18 months. A NAWM layer mask, comprised of fifteen layers, 1 mm thick each surrounding WMHs, was generated for periventricular (PVWMH) and deep (DWMH) WMHs. Mean CBF for each layer was computed. New WMH and persistent NAWM voxels for each penumbra layer were defined from follow-up MRI. RESULTS CBF in the area surrounding WMHs was significantly lower than the total brain NAWM, extending approximately 12 mm from both the established PVWMH and DWMH. Voxels with new WMH at follow-up had significantly lower baseline CBF than voxels that maintained NAWM, suggesting that baseline CBF can predict the development of new WMHs over time. CONCLUSIONS A CBF penumbra exists surrounding WMHs, which is associated with future WMH expansion. ASL MRI can be used to monitor interventions to increase white matter blood flow for the prevention of further WM damage and its cognitive and motor consequences.
منابع مشابه
Comparison of cerebral blood flow and structural penumbras in relation to white matter hyperintensities: A multi-modal magnetic resonance imaging study
Normal-appearing white matter (NAWM) surrounding WMHs is associated with decreased structural integrity and perfusion, increased risk of WMH growth, and is referred to as the WMH penumbra. Studies comparing structural and cerebral blood flow (CBF) penumbras within the same individuals are lacking, however, and would facilitate our understanding of mechanisms resulting in WM damage. This study a...
متن کاملEndothelial function and white matter hyperintensities in older adults with cardiovascular disease.
BACKGROUND AND PURPOSE The presence of white matter hyperintensities on brain MRI is common among elderly individuals. Previous research suggests that cardiovascular risk factors are associated with increased white matter hyperintensities. Examining the role of direct physiological measures of vascular function will help to clarify the vascular mechanisms related to white matter hyperintensitie...
متن کاملA novel method to derive separate gray and white matter cerebral blood flow measures from MR imaging of acute ischemic stroke patients.
Perfusion-weighted imaging (PWI) measures can predict tissue outcome in acute ischemic stroke. Accuracy might be improved if differential tissue susceptibility to ischemia is considered. We present a novel voxel-by-voxel analysis to characterize cerebral blood flow (CBF) separately in gray (GM) and white matter (WM). Ten patients were scanned with inversion-recovery spin-echo EPI (IRSEPI), diff...
متن کاملVessel size imaging reveals pathological changes of microvessel density and size in acute ischemia.
The aim of this study was to test the feasibility of vessel size imaging with precise evaluation of apparent diffusion coefficient and cerebral blood volume and to apply this novel technique in acute stroke patients within a pilot group to observe the microvascular responses in acute ischemic tissue. Microvessel density-related quantity Q and mean vessel size index (VSI) were assessed in 9 heal...
متن کاملWhite matter hyperintensities and their penumbra lie along a continuum of injury in the aging brain.
BACKGROUND AND PURPOSE Aging is accompanied by clinically silent cerebral white matter injury identified through white matter hyperintensities (WMHs) on fluid-attenuated inversion recovery (FLAIR)- and diffusion tensor imaging-based measures of white matter integrity. The temporal course of FLAIR and diffusion tensor imaging changes within WMHs and their less-injured periphery (ie, their penumb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015